springboot集成tensorflow实现图片检测功能-kb88凯时官网登录

来自:网络
时间:2024-09-10
阅读:
免费资源网,https://freexyz.cn/

1.什么是tensorflow?

tensorflow名字的由来就是张量(tensor)在计算图(computational graph)里的流动(flow),如图。它的基础就是前面介绍的基于计算图的自动微分,除了自动帮你求梯度之外,它也提供了各种常见的操作(op,也就是计算图的节点),常见的损失函数,优化算法。

springboot集成tensorflow实现图片检测功能

  • tensorflow 是一个开放源代码软件库,用于进行高性能数值计算。借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(cpu、gpu、tpu)和设备(桌面设备、服务器集群、移动设备、边缘设备等)。

  • tensorflow 是一个用于研究和生产的开放源代码机器学习库。tensorflow 提供了各种 api,可供初学者和专家在桌面、移动、网络和云端环境下进行开发。

  • tensorflow是采用数据流图(data flow graphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(nodes)在图中表示数学操作,图中的边(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor)。训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是tensorflow名字的由来。 张量(tensor):张量有多种. 零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如 [1],一阶张量为 向量 (vector), 比如 一维的 [1, 2, 3],二阶张量为 矩阵 (matrix), 比如 二维的 [[1, 2, 3],[4, 5, 6],[7, 8, 9]],以此类推, 还有 三阶 三维的 … 张量从流图的一端流动到另一端的计算过程。它生动形象地描述了复杂数据结构在人工神经网中的流动、传输、分析和处理模式。

在机器学习中,数值通常由4种类型构成: (1)标量(scalar):即一个数值,它是计算的最小单元,如“1”或“3.2”等。 (2)向量(vector):由一些标量构成的一维数组,如[1, 3.2, 4.6]等。 (3)矩阵(matrix):是由标量构成的二维数组。 (4)张量(tensor):由多维(通常)数组构成的数据集合,可理解为高维矩阵。

tensorflow的基本概念

  • 图:描述了计算过程,tensorflow用图来表示计算过程
  • 张量:tensorflow 使用tensor表示数据,每一个tensor是一个多维化的数组
  • 操作:图中的节点为op,一个op获得/输入0个或者多个tensor,执行并计算,产生0个或多个tensor
  • 会话:session tensorflow的运行需要再绘话里面运行

tensorflow写代码流程

  • 定义变量占位符
  • 根据数学原理写方程
  • 定义损失函数cost
  • 定义优化梯度下降 gradientdescentoptimizer
  • session 进行训练,for循环
  • 保存saver

2.环境准备

整合步骤

  • 模型构建:首先,我们需要在tensorflow中定义并训练深度学习模型。这可能涉及选择合适的网络结构、优化器和损失函数等。
  • 训练数据准备:接下来,我们需要准备用于训练和验证模型的数据。这可能包括数据清洗、标注和预处理等步骤。
  • rest api设计:为了与tensorflow模型进行交互,我们需要在springboot中创建一个rest api。这可以使用springboot的内置功能来实现,例如使用spring mvc或spring webflux。
  • 模型部署:在模型训练完成后,我们需要将其部署到springboot应用中。为此,我们可以使用tensorflow的java api将模型导出为onnx或savedmodel格式,然后在springboot应用中加载并使用。

在整合过程中,有几个关键点需要注意。首先,防火墙设置可能会影响tensorflow训练过程中的网络通信。确保你的防火墙允许tensorflow访问其所需的网络资源,以免出现训练中断或模型性能下降的问题。其次,要关注版本兼容性。springboot和tensorflow都有各自的版本更新周期,确保在整合时使用兼容的版本可以避免很多不必要的麻烦。

3.代码工程

实验目的

实现图片检测

pom.xml



    
        springboot-demo
        com.et
        1.0-snapshot
    
    4.0.0
    tensorflow
    
        11
        11
    
    
        
            org.springframework.boot
            spring-boot-starter-web
        
        
            org.springframework.boot
            spring-boot-autoconfigure
        
        
            org.springframework.boot
            spring-boot-starter-test
            test
        
        
            org.tensorflow
            tensorflow-core-platform
            0.5.0
        
        
            org.projectlombok
            lombok
        
        
            jmimemagic
            jmimemagic
            0.1.2
        
        
            jakarta.platform
            jakarta.jakartaee-api
            9.0.0
        
        
            commons-io
            commons-io
            2.16.1
        
        
            org.springframework.restdocs
            spring-restdocs-mockmvc
            test
        
    

controller

package com.et.tf.api;
import java.io.ioexception;
import com.et.tf.service.classifyimageservice;
import net.sf.jmimemagic.magic;
import net.sf.jmimemagic.magicmatch;
import org.springframework.beans.factory.annotation.autowired;
import org.springframework.web.bind.annotation.crossorigin;
import org.springframework.web.bind.annotation.postmapping;
import org.springframework.web.bind.annotation.requestmapping;
import org.springframework.web.bind.annotation.requestparam;
import org.springframework.web.bind.annotation.restcontroller;
import org.springframework.web.multipart.multipartfile;
@restcontroller
@requestmapping("/api")
public class appcontroller {
    @autowired
    classifyimageservice classifyimageservice;
    @postmapping(value = "/classify")
    @crossorigin(origins = "*")
    public classifyimageservice.labelwithprobability classifyimage(@requestparam multipartfile file) throws ioexception {
        checkimagecontents(file);
        return classifyimageservice.classifyimage(file.getbytes());
    }
    @requestmapping(value = "/")
    public string index() {
        return "index";
    }
    private void checkimagecontents(multipartfile file) {
        magicmatch match;
        try {
            match = magic.getmagicmatch(file.getbytes());
        } catch (exception e) {
            throw new runtimeexception(e);
        }
        string mimetype = match.getmimetype();
        if (!mimetype.startswith("image")) {
            throw new illegalargumentexception("not an image type: "   mimetype);
        }
    }
}

service

package com.et.tf.service;
import jakarta.annotation.predestroy;
import java.util.arrays;
import java.util.list;
import lombok.allargsconstructor;
import lombok.data;
import lombok.noargsconstructor;
import lombok.extern.slf4j.slf4j;
import org.springframework.beans.factory.annotation.value;
import org.springframework.stereotype.service;
import org.tensorflow.graph;
import org.tensorflow.output;
import org.tensorflow.session;
import org.tensorflow.tensor;
import org.tensorflow.ndarray.ndarrays;
import org.tensorflow.ndarray.shape;
import org.tensorflow.ndarray.buffer.floatdatabuffer;
import org.tensorflow.op.opscope;
import org.tensorflow.op.scope;
import org.tensorflow.proto.framework.datatype;
import org.tensorflow.types.tfloat32;
import org.tensorflow.types.tint32;
import org.tensorflow.types.tstring;
import org.tensorflow.types.family.ttype;
//inspired from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/java/src/main/java/org/tensorflow/examples/labelimage.java
@service
@slf4j
public class classifyimageservice {
    private final session session;
    private final list labels;
    private final string outputlayer;
    private final int w;
    private final int h;
    private final float mean;
    private final float scale;
    public classifyimageservice(
        graph inceptiongraph, list labels, @value("${tf.outputlayer}") string outputlayer,
        @value("${tf.image.width}") int imagew, @value("${tf.image.height}") int imageh,
        @value("${tf.image.mean}") float mean, @value("${tf.image.scale}") float scale
    ) {
        this.labels = labels;
        this.outputlayer = outputlayer;
        this.h = imageh;
        this.w = imagew;
        this.mean = mean;
        this.scale = scale;
        this.session = new session(inceptiongraph);
    }
    public labelwithprobability classifyimage(byte[] imagebytes) {
        long start = system.currenttimemillis();
        try (tensor image = normalizedimagetotensor(imagebytes)) {
            float[] labelprobabilities = classifyimageprobabilities(image);
            int bestlabelidx = maxindex(labelprobabilities);
            labelwithprobability labelwithprobability =
                new labelwithprobability(labels.get(bestlabelidx), labelprobabilities[bestlabelidx] * 100f, system.currenttimemillis() - start);
            log.debug(string.format(
                    "image classification [%s %.2f%%] took %d ms",
                    labelwithprobability.getlabel(),
                    labelwithprobability.getprobability(),
                    labelwithprobability.getelapsed()
                )
            );
            return labelwithprobability;
        }
    }
    private float[] classifyimageprobabilities(tensor image) {
        try (tensor result = session.runner().feed("input", image).fetch(outputlayer).run().get(0)) {
            final shape resultshape = result.shape();
            final long[] rshape = resultshape.asarray();
            if (resultshape.numdimensions() != 2 || rshape[0] != 1) {
                throw new runtimeexception(
                    string.format(
                        "expected model to produce a [1 n] shaped tensor where n is the number of labels, instead it produced one with shape %s",
                        arrays.tostring(rshape)
                    ));
            }
            int nlabels = (int) rshape[1];
            floatdatabuffer resultfloatbuffer = result.asrawtensor().data().asfloats();
            float[] dst = new float[nlabels];
            resultfloatbuffer.read(dst);
            return dst;
        }
    }
    private int maxindex(float[] probabilities) {
        int best = 0;
        for (int i = 1; i < probabilities.length;   i) {
            if (probabilities[i] > probabilities[best]) {
                best = i;
            }
        }
        return best;
    }
    private tensor normalizedimagetotensor(byte[] imagebytes) {
        try (graph g = new graph();
             tint32 batchtensor = tint32.scalarof(0);
             tint32 sizetensor = tint32.vectorof(h, w);
             tfloat32 meantensor = tfloat32.scalarof(mean);
             tfloat32 scaletensor = tfloat32.scalarof(scale);
        ) {
            graphbuilder b = new graphbuilder(g);
            //tutorial python here: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/label_image
            // some constants specific to the pre-trained model at:
            // https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
            //
            // - the model was trained with images scaled to 299x299 pixels.
            // - the colors, represented as r, g, b in 1-byte each were converted to
            //   float using (value - mean)/scale.
            // since the graph is being constructed once per execution here, we can use a constant for the
            // input image. if the graph were to be re-used for multiple input images, a placeholder would
            // have been more appropriate.
            final output input = b.constant("input", tstring.tensorofbytes(ndarrays.scalarofobject(imagebytes)));
            final output output =
                b.div(
                    b.sub(
                        b.resizebilinear(
                            b.expanddims(
                                b.cast(b.decodejpeg(input, 3), datatype.dt_float),
                                b.constant("make_batch", batchtensor)
                            ),
                            b.constant("size", sizetensor)
                        ),
                        b.constant("mean", meantensor)
                    ),
                    b.constant("scale", scaletensor)
                );
            try (session s = new session(g)) {
                return s.runner().fetch(output.op().name()).run().get(0);
            }
        }
    }
    static class graphbuilder {
        final scope scope;
        graphbuilder(graph g) {
            this.g = g;
            this.scope = new opscope(g);
        }
        output div(output x, output y) {
            return binaryop("div", x, y);
        }
        output sub(output x, output y) {
            return binaryop("sub", x, y);
        }
        output resizebilinear(output images, output size) {
            return binaryop("resizebilinear", images, size);
        }
        output expanddims(output input, output dim) {
            return binaryop("expanddims", input, dim);
        }
        output cast(output value, datatype dtype) {
            return g.opbuilder("cast", "cast", scope).addinput(value).setattr("dstt", dtype).build().output(0);
        }
        output decodejpeg(output contents, long channels) {
            return g.opbuilder("decodejpeg", "decodejpeg", scope)
                .addinput(contents)
                .setattr("channels", channels)
                .build()
                .output(0);
        }
        output constant(string name, tensor t) {
            return g.opbuilder("const", name, scope)
                .setattr("dtype", t.datatype())
                .setattr("value", t)
                .build()
                .output(0);
        }
        private output binaryop(string type, output in1, output in2) {
            return g.opbuilder(type, type, scope).addinput(in1).addinput(in2).build().output(0);
        }
        private final graph g;
    }
    @predestroy
    public void close() {
        session.close();
    }
    @data
    @noargsconstructor
    @allargsconstructor
    public static class labelwithprobability {
        private string label;
        private float probability;
        private long elapsed;
    }
}

application.yaml

tf:
    frozenmodelpath: inception-v3/inception_v3_2016_08_28_frozen.pb
    labelspath: inception-v3/imagenet_slim_labels.txt
    outputlayer: inceptionv3/predictions/reshape_1
    image:
        width: 299
        height: 299
        mean: 0
        scale: 255
logging.level.net.sf.jmimemagic: warn
spring:
  servlet:
    multipart:
      max-file-size: 5mb

application.java

package com.et.tf;
import java.io.ioexception;
import java.nio.charset.standardcharsets;
import java.util.list;
import java.util.stream.collectors;
import lombok.extern.slf4j.slf4j;
import org.apache.commons.io.ioutils;
import org.springframework.beans.factory.annotation.value;
import org.springframework.boot.springapplication;
import org.springframework.boot.autoconfigure.springbootapplication;
import org.springframework.context.annotation.bean;
import org.springframework.core.io.classpathresource;
import org.springframework.core.io.filesystemresource;
import org.springframework.core.io.resource;
import org.tensorflow.graph;
import org.tensorflow.proto.framework.graphdef;
@springbootapplication
@slf4j
public class application {
    public static void main(string[] args) {
        springapplication.run(application.class, args);
    }
    @bean
    public graph tfmodelgraph(@value("${tf.frozenmodelpath}") string tffrozenmodelpath) throws ioexception {
        resource graphresource = getresource(tffrozenmodelpath);
        graph graph = new graph();
        graph.importgraphdef(graphdef.parsefrom(graphresource.getinputstream()));
        log.info("loaded tensorflow model");
        return graph;
    }
    private resource getresource(@value("${tf.frozenmodelpath}") string tffrozenmodelpath) {
        resource graphresource = new filesystemresource(tffrozenmodelpath);
        if (!graphresource.exists()) {
            graphresource = new classpathresource(tffrozenmodelpath);
        }
        if (!graphresource.exists()) {
            throw new illegalargumentexception(string.format("file %s does not exist", tffrozenmodelpath));
        }
        return graphresource;
    }
    @bean
    public list tfmodellabels(@value("${tf.labelspath}") string labelspath) throws ioexception {
        resource labelsres = getresource(labelspath);
        log.info("loaded model labels");
        return ioutils.readlines(labelsres.getinputstream(), standardcharsets.utf_8).stream()
            .map(label -> label.substring(label.contains(":") ? label.indexof(":")   1 : 0)).collect(collectors.tolist());
    }
}

以上只是一些关键代码,所有代码请参见下面代码仓库

代码仓库

4.测试

启动 spring boot应用程序

测试图片分类

访问http://127.0.0.1:8080/,上传一张图片,点击分类

springboot集成tensorflow实现图片检测功能

5.总结

以上就是springboot集成tensorflow实现图片检测功能的详细内容,更多关于springboot tensorflow图片检测的资料请关注其它相关文章!

免费资源网,https://freexyz.cn/
返回顶部
顶部
网站地图