python实现我的世界小游戏源代码-kb88凯时官网登录

时间:2021-03-02
阅读:
免费资源网 - https://freexyz.cn/

我的世界小游戏使用方法:

移动

前进:w,后退:s,向左:a,向右:d,环顾四周:鼠标,跳起:空格键,切换飞行模式:tab;

选择建筑材料

砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击

esc退出程序。

完整程序包请通过文末地址下载,程序运行截图如下:

from __future__ import division
import sys
import math
import random
import time
from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import texturegroup
from pyglet.window import key, mouse
ticks_per_sec = 60
# size of sectors used to ease block loading.
sector_size = 16
walking_speed = 5
flying_speed = 15
gravity = 20.0
max_jump_height = 1.0 # about the height of a block.
# to derive the formula for calculating jump speed, first solve
#  v_t = v_0   a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. this gives:
#  t = - v_0 / a
# use t and the desired max_jump_height to solve for v_0 (jump speed) in
#  s = s_0   v_0 * t   (a * t^2) / 2
jump_speed = math.sqrt(2 * gravity * max_jump_height)
terminal_velocity = 50
player_height = 2
if sys.version_info[0] >= 3:
  xrange = range
def cube_vertices(x, y, z, n):
  """ return the vertices of the cube at position x, y, z with size 2*n.
  """
  return [
    x-n,y n,z-n, x-n,y n,z n, x n,y n,z n, x n,y n,z-n, # top
    x-n,y-n,z-n, x n,y-n,z-n, x n,y-n,z n, x-n,y-n,z n, # bottom
    x-n,y-n,z-n, x-n,y-n,z n, x-n,y n,z n, x-n,y n,z-n, # left
    x n,y-n,z n, x n,y-n,z-n, x n,y n,z-n, x n,y n,z n, # right
    x-n,y-n,z n, x n,y-n,z n, x n,y n,z n, x-n,y n,z n, # front
    x n,y-n,z-n, x-n,y-n,z-n, x-n,y n,z-n, x n,y n,z-n, # back
  ]
def tex_coord(x, y, n=4):
  """ return the bounding vertices of the texture square.
  """
  m = 1.0 / n
  dx = x * m
  dy = y * m
  return dx, dy, dx   m, dy, dx   m, dy   m, dx, dy   m
def tex_coords(top, bottom, side):
  """ return a list of the texture squares for the top, bottom and side.
  """
  top = tex_coord(*top)
  bottom = tex_coord(*bottom)
  side = tex_coord(*side)
  result = []
  result.extend(top)
  result.extend(bottom)
  result.extend(side * 4)
  return result
texture_path = 'texture.png'
grass = tex_coords((1, 0), (0, 1), (0, 0))
sand = tex_coords((1, 1), (1, 1), (1, 1))
brick = tex_coords((2, 0), (2, 0), (2, 0))
stone = tex_coords((2, 1), (2, 1), (2, 1))
faces = [
  ( 0, 1, 0),
  ( 0,-1, 0),
  (-1, 0, 0),
  ( 1, 0, 0),
  ( 0, 0, 1),
  ( 0, 0,-1),
]
def normalize(position):
  """ accepts `position` of arbitrary precision and returns the block
  containing that position.
  parameters
  ----------
  position : tuple of len 3
  returns
  -------
  block_position : tuple of ints of len 3
  """
  x, y, z = position
  x, y, z = (int(round(x)), int(round(y)), int(round(z)))
  return (x, y, z)
def sectorize(position):
  """ returns a tuple representing the sector for the given `position`.
  parameters
  ----------
  position : tuple of len 3
  returns
  -------
  sector : tuple of len 3
  """
  x, y, z = normalize(position)
  x, y, z = x // sector_size, y // sector_size, z // sector_size
  return (x, 0, z)
class model(object):
  def __init__(self):
    # a batch is a collection of vertex lists for batched rendering.
    self.batch = pyglet.graphics.batch()
    # a texturegroup manages an opengl texture.
    self.group = texturegroup(image.load(texture_path).get_texture())
    # a mapping from position to the texture of the block at that position.
    # this defines all the blocks that are currently in the world.
    self.world = {}
    # same mapping as `world` but only contains blocks that are shown.
    self.shown = {}
    # mapping from position to a pyglet `vertextlist` for all shown blocks.
    self._shown = {}
    # mapping from sector to a list of positions inside that sector.
    self.sectors = {}
    # simple function queue implementation. the queue is populated with
    # _show_block() and _hide_block() calls
    self.queue = deque()
    self._initialize()
  def _initialize(self):
    """ initialize the world by placing all the blocks.
    """
    n = 80 # 1/2 width and height of world
    s = 1 # step size
    y = 0 # initial y height
    for x in xrange(-n, n   1, s):
      for z in xrange(-n, n   1, s):
        # create a layer stone an grass everywhere.
        self.add_block((x, y - 2, z), grass, immediate=false)
        self.add_block((x, y - 3, z), stone, immediate=false)
        if x in (-n, n) or z in (-n, n):
          # create outer walls.
          for dy in xrange(-2, 3):
            self.add_block((x, y   dy, z), stone, immediate=false)
    # generate the hills randomly
    o = n - 10
    for _ in xrange(120):
      a = random.randint(-o, o) # x position of the hill
      b = random.randint(-o, o) # z position of the hill
      c = -1 # base of the hill
      h = random.randint(1, 6) # height of the hill
      s = random.randint(4, 8) # 2 * s is the side length of the hill
      d = 1 # how quickly to taper off the hills
      t = random.choice([grass, sand, brick])
      for y in xrange(c, c   h):
        for x in xrange(a - s, a   s   1):
          for z in xrange(b - s, b   s   1):
            if (x - a) ** 2   (z - b) ** 2 > (s   1) ** 2:
              continue
            if (x - 0) ** 2   (z - 0) ** 2 < 5 ** 2:
              continue
            self.add_block((x, y, z), t, immediate=false)
        s -= d # decrement side lenth so hills taper off
  def hit_test(self, position, vector, max_distance=8):
    """ line of sight search from current position. if a block is
    intersected it is returned, along with the block previously in the line
    of sight. if no block is found, return none, none.
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position to check visibility from.
    vector : tuple of len 3
      the line of sight vector.
    max_distance : int
      how many blocks away to search for a hit.
    """
    m = 8
    x, y, z = position
    dx, dy, dz = vector
    previous = none
    for _ in xrange(max_distance * m):
      key = normalize((x, y, z))
      if key != previous and key in self.world:
        return key, previous
      previous = key
      x, y, z = x   dx / m, y   dy / m, z   dz / m
    return none, none
  def exposed(self, position):
    """ returns false is given `position` is surrounded on all 6 sides by
    blocks, true otherwise.
    """
    x, y, z = position
    for dx, dy, dz in faces:
      if (x   dx, y   dy, z   dz) not in self.world:
        return true
    return false
  def add_block(self, position, texture, immediate=true):
    """ add a block with the given `texture` and `position` to the world.
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position of the block to add.
    texture : list of len 3
      the coordinates of the texture squares. use `tex_coords()` to
      generate.
    immediate : bool
      whether or not to draw the block immediately.
    """
    if position in self.world:
      self.remove_block(position, immediate)
    self.world[position] = texture
    self.sectors.setdefault(sectorize(position), []).append(position)
    if immediate:
      if self.exposed(position):
        self.show_block(position)
      self.check_neighbors(position)
  def remove_block(self, position, immediate=true):
    """ remove the block at the given `position`.
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position of the block to remove.
    immediate : bool
      whether or not to immediately remove block from canvas.
    """
    del self.world[position]
    self.sectors[sectorize(position)].remove(position)
    if immediate:
      if position in self.shown:
        self.hide_block(position)
      self.check_neighbors(position)
  def check_neighbors(self, position):
    """ check all blocks surrounding `position` and ensure their visual
    state is current. this means hiding blocks that are not exposed and
    ensuring that all exposed blocks are shown. usually used after a block
    is added or removed.
    """
    x, y, z = position
    for dx, dy, dz in faces:
      key = (x   dx, y   dy, z   dz)
      if key not in self.world:
        continue
      if self.exposed(key):
        if key not in self.shown:
          self.show_block(key)
      else:
        if key in self.shown:
          self.hide_block(key)
  def show_block(self, position, immediate=true):
    """ show the block at the given `position`. this method assumes the
    block has already been added with add_block()
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position of the block to show.
    immediate : bool
      whether or not to show the block immediately.
    """
    texture = self.world[position]
    self.shown[position] = texture
    if immediate:
      self._show_block(position, texture)
    else:
      self._enqueue(self._show_block, position, texture)
  def _show_block(self, position, texture):
    """ private implementation of the `show_block()` method.
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position of the block to show.
    texture : list of len 3
      the coordinates of the texture squares. use `tex_coords()` to
      generate.
    """
    x, y, z = position
    vertex_data = cube_vertices(x, y, z, 0.5)
    texture_data = list(texture)
    # create vertex list
    # fixme maybe `add_indexed()` should be used instead
    self._shown[position] = self.batch.add(24, gl_quads, self.group,
      ('v3f/static', vertex_data),
      ('t2f/static', texture_data))
  def hide_block(self, position, immediate=true):
    """ hide the block at the given `position`. hiding does not remove the
    block from the world.
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position of the block to hide.
    immediate : bool
      whether or not to immediately remove the block from the canvas.
    """
    self.shown.pop(position)
    if immediate:
      self._hide_block(position)
    else:
      self._enqueue(self._hide_block, position)
  def _hide_block(self, position):
    """ private implementation of the 'hide_block()` method.
    """
    self._shown.pop(position).delete()
  def show_sector(self, sector):
    """ ensure all blocks in the given sector that should be shown are
    drawn to the canvas.
    """
    for position in self.sectors.get(sector, []):
      if position not in self.shown and self.exposed(position):
        self.show_block(position, false)
  def hide_sector(self, sector):
    """ ensure all blocks in the given sector that should be hidden are
    removed from the canvas.
    """
    for position in self.sectors.get(sector, []):
      if position in self.shown:
        self.hide_block(position, false)
  def change_sectors(self, before, after):
    """ move from sector `before` to sector `after`. a sector is a
    contiguous x, y sub-region of world. sectors are used to speed up
    world rendering.
    """
    before_set = set()
    after_set = set()
    pad = 4
    for dx in xrange(-pad, pad   1):
      for dy in [0]: # xrange(-pad, pad   1):
        for dz in xrange(-pad, pad   1):
          if dx ** 2   dy ** 2   dz ** 2 > (pad   1) ** 2:
            continue
          if before:
            x, y, z = before
            before_set.add((x   dx, y   dy, z   dz))
          if after:
            x, y, z = after
            after_set.add((x   dx, y   dy, z   dz))
    show = after_set - before_set
    hide = before_set - after_set
    for sector in show:
      self.show_sector(sector)
    for sector in hide:
      self.hide_sector(sector)
  def _enqueue(self, func, *args):
    """ add `func` to the internal queue.
    """
    self.queue.append((func, args))
  def _dequeue(self):
    """ pop the top function from the internal queue and call it.
    """
    func, args = self.queue.popleft()
    func(*args)
  def process_queue(self):
    """ process the entire queue while taking periodic breaks. this allows
    the game loop to run smoothly. the queue contains calls to
    _show_block() and _hide_block() so this method should be called if
    add_block() or remove_block() was called with immediate=false
    """
    start = time.perf_counter()
    while self.queue and time.time()- start < 1.0 / ticks_per_sec:
      self._dequeue()
  def process_entire_queue(self):
    """ process the entire queue with no breaks.
    """
    while self.queue:
      self._dequeue()
class window(pyglet.window.window):
  def __init__(self, *args, **kwargs):
    super(window, self).__init__(*args, **kwargs)
    # whether or not the window exclusively captures the mouse.
    self.exclusive = false
    # when flying gravity has no effect and speed is increased.
    self.flying = false
    # strafing is moving lateral to the direction you are facing,
    # e.g. moving to the left or right while continuing to face forward.
    #
    # first element is -1 when moving forward, 1 when moving back, and 0
    # otherwise. the second element is -1 when moving left, 1 when moving
    # right, and 0 otherwise.
    self.strafe = [0, 0]
    # current (x, y, z) position in the world, specified with floats. note
    # that, perhaps unlike in math class, the y-axis is the vertical axis.
    self.position = (0, 0, 0)
    # first element is rotation of the player in the x-z plane (ground
    # plane) measured from the z-axis down. the second is the rotation
    # angle from the ground plane up. rotation is in degrees.
    #
    # the vertical plane rotation ranges from -90 (looking straight down) to
    # 90 (looking straight up). the horizontal rotation range is unbounded.
    self.rotation = (0, 0)
    # which sector the player is currently in.
    self.sector = none
    # the crosshairs at the center of the screen.
    self.reticle = none
    # velocity in the y (upward) direction.
    self.dy = 0
    # a list of blocks the player can place. hit num keys to cycle.
    self.inventory = [brick, grass, sand]
    # the current block the user can place. hit num keys to cycle.
    self.block = self.inventory[0]
    # convenience list of num keys.
    self.num_keys = [
      key._1, key._2, key._3, key._4, key._5,
      key._6, key._7, key._8, key._9, key._0]
    # instance of the model that handles the world.
    self.model = model()
    # the label that is displayed in the top left of the canvas.
    self.label = pyglet.text.label('', font_name='arial', font_size=18,
      x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
      color=(0, 0, 0, 255))
    # this call schedules the `update()` method to be called
    # ticks_per_sec. this is the main game event loop.
    pyglet.clock.schedule_interval(self.update, 1.0 / ticks_per_sec)
  def set_exclusive_mouse(self, exclusive):
    """ if `exclusive` is true, the game will capture the mouse, if false
    the game will ignore the mouse.
    """
    super(window, self).set_exclusive_mouse(exclusive)
    self.exclusive = exclusive
  def get_sight_vector(self):
    """ returns the current line of sight vector indicating the direction
    the player is looking.
    """
    x, y = self.rotation
    # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
    # is 1 when looking ahead parallel to the ground and 0 when looking
    # straight up or down.
    m = math.cos(math.radians(y))
    # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
    # looking straight up.
    dy = math.sin(math.radians(y))
    dx = math.cos(math.radians(x - 90)) * m
    dz = math.sin(math.radians(x - 90)) * m
    return (dx, dy, dz)
  def get_motion_vector(self):
    """ returns the current motion vector indicating the velocity of the
    player.
    returns
    -------
    vector : tuple of len 3
      tuple containing the velocity in x, y, and z respectively.
    """
    if any(self.strafe):
      x, y = self.rotation
      strafe = math.degrees(math.atan2(*self.strafe))
      y_angle = math.radians(y)
      x_angle = math.radians(x   strafe)
      if self.flying:
        m = math.cos(y_angle)
        dy = math.sin(y_angle)
        if self.strafe[1]:
          # moving left or right.
          dy = 0.0
          m = 1
        if self.strafe[0] > 0:
          # moving backwards.
          dy *= -1
        # when you are flying up or down, you have less left and right
        # motion.
        dx = math.cos(x_angle) * m
        dz = math.sin(x_angle) * m
      else:
        dy = 0.0
        dx = math.cos(x_angle)
        dz = math.sin(x_angle)
    else:
      dy = 0.0
      dx = 0.0
      dz = 0.0
    return (dx, dy, dz)
  def update(self, dt):
    """ this method is scheduled to be called repeatedly by the pyglet
    clock.
    parameters
    ----------
    dt : float
      the change in time since the last call.
    """
    self.model.process_queue()
    sector = sectorize(self.position)
    if sector != self.sector:
      self.model.change_sectors(self.sector, sector)
      if self.sector is none:
        self.model.process_entire_queue()
      self.sector = sector
    m = 8
    dt = min(dt, 0.2)
    for _ in xrange(m):
      self._update(dt / m)
  def _update(self, dt):
    """ private implementation of the `update()` method. this is where most
    of the motion logic lives, along with gravity and collision detection.
    parameters
    ----------
    dt : float
      the change in time since the last call.
    """
    # walking
    speed = flying_speed if self.flying else walking_speed
    d = dt * speed # distance covered this tick.
    dx, dy, dz = self.get_motion_vector()
    # new position in space, before accounting for gravity.
    dx, dy, dz = dx * d, dy * d, dz * d
    # gravity
    if not self.flying:
      # update your vertical speed: if you are falling, speed up until you
      # hit terminal velocity; if you are jumping, slow down until you
      # start falling.
      self.dy -= dt * gravity
      self.dy = max(self.dy, -terminal_velocity)
      dy  = self.dy * dt
    # collisions
    x, y, z = self.position
    x, y, z = self.collide((x   dx, y   dy, z   dz), player_height)
    self.position = (x, y, z)
  def collide(self, position, height):
    """ checks to see if the player at the given `position` and `height`
    is colliding with any blocks in the world.
    parameters
    ----------
    position : tuple of len 3
      the (x, y, z) position to check for collisions at.
    height : int or float
      the height of the player.
    returns
    -------
    position : tuple of len 3
      the new position of the player taking into account collisions.
    """
    # how much overlap with a dimension of a surrounding block you need to
    # have to count as a collision. if 0, touching terrain at all counts as
    # a collision. if .49, you sink into the ground, as if walking through
    # tall grass. if >= .5, you'll fall through the ground.
    pad = 0.25
    p = list(position)
    np = normalize(position)
    for face in faces: # check all surrounding blocks
      for i in xrange(3): # check each dimension independently
        if not face[i]:
          continue
        # how much overlap you have with this dimension.
        d = (p[i] - np[i]) * face[i]
        if d < pad:
          continue
        for dy in xrange(height): # check each height
          op = list(np)
          op[1] -= dy
          op[i]  = face[i]
          if tuple(op) not in self.model.world:
            continue
          p[i] -= (d - pad) * face[i]
          if face == (0, -1, 0) or face == (0, 1, 0):
            # you are colliding with the ground or ceiling, so stop
            # falling / rising.
            self.dy = 0
          break
    return tuple(p)
  def on_mouse_press(self, x, y, button, modifiers):
    """ called when a mouse button is pressed. see pyglet docs for button
    amd modifier mappings.
    parameters
    ----------
    x, y : int
      the coordinates of the mouse click. always center of the screen if
      the mouse is captured.
    button : int
      number representing mouse button that was clicked. 1 = left button,
      4 = right button.
    modifiers : int
      number representing any modifying keys that were pressed when the
      mouse button was clicked.
    """
    if self.exclusive:
      vector = self.get_sight_vector()
      block, previous = self.model.hit_test(self.position, vector)
      if (button == mouse.right) or \
          ((button == mouse.left) and (modifiers & key.mod_ctrl)):
        # on osx, control   left click = right click.
        if previous:
          self.model.add_block(previous, self.block)
      elif button == pyglet.window.mouse.left and block:
        texture = self.model.world[block]
        if texture != stone:
          self.model.remove_block(block)
    else:
      self.set_exclusive_mouse(true)
  def on_mouse_motion(self, x, y, dx, dy):
    """ called when the player moves the mouse.
    parameters
    ----------
    x, y : int
      the coordinates of the mouse click. always center of the screen if
      the mouse is captured.
    dx, dy : float
      the movement of the mouse.
    """
    if self.exclusive:
      m = 0.15
      x, y = self.rotation
      x, y = x   dx * m, y   dy * m
      y = max(-90, min(90, y))
      self.rotation = (x, y)
  def on_key_press(self, symbol, modifiers):
    """ called when the player presses a key. see pyglet docs for key
    mappings.
    parameters
    ----------
    symbol : int
      number representing the key that was pressed.
    modifiers : int
      number representing any modifying keys that were pressed.
    """
    if symbol == key.w:
      self.strafe[0] -= 1
    elif symbol == key.s:
      self.strafe[0]  = 1
    elif symbol == key.a:
      self.strafe[1] -= 1
    elif symbol == key.d:
      self.strafe[1]  = 1
    elif symbol == key.space:
      if self.dy == 0:
        self.dy = jump_speed
    elif symbol == key.escape:
      self.set_exclusive_mouse(false)
    elif symbol == key.tab:
      self.flying = not self.flying
    elif symbol in self.num_keys:
      index = (symbol - self.num_keys[0]) % len(self.inventory)
      self.block = self.inventory[index]
  def on_key_release(self, symbol, modifiers):
    """ called when the player releases a key. see pyglet docs for key
    mappings.
    parameters
    ----------
    symbol : int
      number representing the key that was pressed.
    modifiers : int
      number representing any modifying keys that were pressed.
    """
    if symbol == key.w:
      self.strafe[0]  = 1
    elif symbol == key.s:
      self.strafe[0] -= 1
    elif symbol == key.a:
      self.strafe[1]  = 1
    elif symbol == key.d:
      self.strafe[1] -= 1
  def on_resize(self, width, height):
    """ called when the window is resized to a new `width` and `height`.
    """
    # label
    self.label.y = height - 10
    # reticle
    if self.reticle:
      self.reticle.delete()
    x, y = self.width // 2, self.height // 2
    n = 10
    self.reticle = pyglet.graphics.vertex_list(4,
      ('v2i', (x - n, y, x   n, y, x, y - n, x, y   n))
    )
  def set_2d(self):
    """ configure opengl to draw in 2d.
    """
    width, height = self.get_size()
    gldisable(gl_depth_test)
    viewport = self.get_viewport_size()
    glviewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
    glmatrixmode(gl_projection)
    glloadidentity()
    glortho(0, max(1, width), 0, max(1, height), -1, 1)
    glmatrixmode(gl_modelview)
    glloadidentity()
  def set_3d(self):
    """ configure opengl to draw in 3d.
    """
    width, height = self.get_size()
    glenable(gl_depth_test)
    viewport = self.get_viewport_size()
    glviewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
    glmatrixmode(gl_projection)
    glloadidentity()
    gluperspective(65.0, width / float(height), 0.1, 60.0)
    glmatrixmode(gl_modelview)
    glloadidentity()
    x, y = self.rotation
    glrotatef(x, 0, 1, 0)
    glrotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
    x, y, z = self.position
    gltranslatef(-x, -y, -z)
  def on_draw(self):
    """ called by pyglet to draw the canvas.
    """
    self.clear()
    self.set_3d()
    glcolor3d(1, 1, 1)
    self.model.batch.draw()
    self.draw_focused_block()
    self.set_2d()
    self.draw_label()
    self.draw_reticle()
  def draw_focused_block(self):
    """ draw black edges around the block that is currently under the
    crosshairs.
    """
    vector = self.get_sight_vector()
    block = self.model.hit_test(self.position, vector)[0]
    if block:
      x, y, z = block
      vertex_data = cube_vertices(x, y, z, 0.51)
      glcolor3d(0, 0, 0)
      glpolygonmode(gl_front_and_back, gl_line)
      pyglet.graphics.draw(24, gl_quads, ('v3f/static', vertex_data))
      glpolygonmode(gl_front_and_back, gl_fill)
  def draw_label(self):
    """ draw the label in the top left of the screen.
    """
    x, y, z = self.position
    self.label.text = 'd (%.2f, %.2f, %.2f) %d / %d' % (
      pyglet.clock.get_fps(), x, y, z,
      len(self.model._shown), len(self.model.world))
    self.label.draw()
  def draw_reticle(self):
    """ draw the crosshairs in the center of the screen.
    """
    glcolor3d(0, 0, 0)
    self.reticle.draw(gl_lines)
def setup_fog():
  """ configure the opengl fog properties.
  """
  # enable fog. fog "blends a fog color with each rasterized pixel fragment's
  # post-texturing color."
  glenable(gl_fog)
  # set the fog color.
  glfogfv(gl_fog_color, (glfloat * 4)(0.5, 0.69, 1.0, 1))
  # say we have no preference between rendering speed and quality.
  glhint(gl_fog_hint, gl_dont_care)
  # specify the equation used to compute the blending factor.
  glfogi(gl_fog_mode, gl_linear)
  # how close and far away fog starts and ends. the closer the start and end,
  # the denser the fog in the fog range.
  glfogf(gl_fog_start, 20.0)
  glfogf(gl_fog_end, 60.0)
def setup():
  """ basic opengl configuration.
  """
  # set the color of "clear", i.e. the sky, in rgba.
  glclearcolor(0.5, 0.69, 1.0, 1)
  # enable culling (not rendering) of back-facing facets -- facets that aren't
  # visible to you.
  glenable(gl_cull_face)
  # set the texture minification/magnification function to gl_nearest (nearest
  # in manhattan distance) to the specified texture coordinates. gl_nearest
  # "is generally faster than gl_linear, but it can produce textured 图片
  # with sharper edges because the transition between texture elements is not
  # as smooth."
  gltexparameteri(gl_texture_2d, gl_texture_min_filter, gl_nearest)
  gltexparameteri(gl_texture_2d, gl_texture_mag_filter, gl_nearest)
  setup_fog()
def main():
  window = window(width=1800, height=1600, caption='pyglet', resizable=true)
  # hide the mouse cursor and prevent the mouse from leaving the window.
  window.set_exclusive_mouse(true)
  setup()
  pyglet.app.run()
if __name__ == '__main__':
  main()

我的世界小游戏python源代码包下载地址:

链接:

提取码: rya9

免费资源网 - https://freexyz.cn/
返回顶部
顶部
网站地图