r语言绘制带errorbar的分组条形图代码的分享-kb88凯时官网登录

来自:网络
时间:2023-05-18
阅读:
免费资源网 - https://freexyz.cn/
目录

笔者近期画了一张带error bar的分组条形图,将相关的代码分享一下。

感谢网友青山屋主的建议,提示笔者要严谨区分技术重复和生物学重复,所以笔者对文章做修改后重发。如果各位有任何建议,欢迎指正。

本文旨在给出一种利用r对生物学重复数据画带error bar的分组条形图的方法。

所用数据是模拟生成的:分成三个组,每个组进行了若干次生物学重复;测量的是3种基因的表达量。数据的部分内容如下:

##       gene1    gene2    gene3  group
## 1  49.72475 267.0007 126.2007 group1
## 2 114.62184 173.8780 150.2641 group2
## 3 128.03351 227.9456 152.6378 group3
## 4 134.90841 385.1979 148.2739 group1
## 5 136.56659 190.0663 122.6201 group2
## 6 143.88241 329.0516 236.9131 group3

两种方法的完整代码放在了文末。如有问题,欢迎指正!

第一种实现方法:用aggregate计算数据

# 导入数据
setwd("e:/")
df <- read.csv("gene_exp.csv", header=t)
 
# 可以在这里改列名,这些列名就是最终图上x轴的标签名。
colnames(df)[1:3] <- c("gene-1", "gene-2", "gene-3")
str(df) # 显示数据集内容
## 'data.frame':    3000 obs. of  4 variables:
##  $ gene-1: num  49.7 114.6 128 134.9 136.6 ...
##  $ gene-2: num  267 174 228 385 190 ...
##  $ gene-3: num  126 150 153 148 123 ...
##  $ group : factor w/ 3 levels "group1","group2",..: 1 2 3 1 2 3 1 2 3 1 ...
# 将上述"宽数据"转化为"长数据"
library(reshape2)
df_reshape <- melt(df, id.vars=c("group"))
str(df_reshape)
## 'data.frame':    9000 obs. of  3 variables:
##  $ group   : factor w/ 3 levels "group1","group2",..: 1 2 3 1 2 3 1 2 3 1 ...
##  $ variable: factor w/ 3 levels "gene-1","gene-2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  49.7 114.6 128 134.9 136.6 ...
# 获取三个组各个基因表达量的平均值
df_mean <- aggregate(df_reshape$value, list(group=df_reshape$group,
                        gene=df_reshape$variable), mean, na.rm=t)
 
# 获取三个组各个基因表达量的标准差
df_sd <- aggregate(df_reshape$value, list(group=df_reshape$group,
                        gene=df_reshape$variable), sd, na.rm=t)
 
# 合并mean和sd
colnames(df_mean)[3] <- "mean"
colnames(df_sd)[3] <- "sd"
df_stat <- merge(df_mean, df_sd, by=c("group", "gene"))
str(df_stat)
## 'data.frame':    9 obs. of  4 variables:
##  $ group: factor w/ 3 levels "group1","group2",..: 1 1 1 2 2 2 3 3 3
##  $ gene : factor w/ 3 levels "gene-1","gene-2",..: 1 2 3 1 2 3 1 2 3
##  $ mean : num  120 249 149 119 250 ...
##  $ sd   : num  19.4 51.4 30.2 21.2 52.3 ...
# 画图
#直接在画图的语句中计算出error_bar所需的数据:
#(即下面的ymin=mean-sd和ymax=mean sd语句)。
library(ggplot2)
dodge <- position_dodge(width=.9)
ggplot(data=df_stat)  
  geom_bar(aes(x=gene, y=mean, fill=group), 
           stat="identity", position=dodge)  
  geom_errorbar(aes(x=gene, ymin=mean-sd, ymax=mean sd, color=group), 
                stat="identity", position=dodge, width=.3)

第二种实现方法:用dplyr包计算数据

# 导入数据
setwd("e:/")
df <- read.csv("gene_exp.csv", header=t)
 
# 可以在这里改列名,这些列名就是最终图上x轴的标签名。
colnames(df)[1:3] <- c("gene-1", "gene-2", "gene-3")
str(df) # 显示数据集内容
## 'data.frame':    3000 obs. of  4 variables:
##  $ gene-1: num  49.7 114.6 128 134.9 136.6 ...
##  $ gene-2: num  267 174 228 385 190 ...
##  $ gene-3: num  126 150 153 148 123 ...
##  $ group : factor w/ 3 levels "group1","group2",..: 1 2 3 1 2 3 1 2 3 1 ...
# 获取三个组各个基因表达量的平均值和标准差
library(tidyr)
library(dplyr)
df_stat <- tbl_df(df) %>%
  gather(gene, value, -group) %>%  # 将"宽数据"转化为"长数据"
  group_by(group, gene) %>%         # 将数据分组
  summarise(mean=mean(value, na.rm=t), sd=sd(value, na.rm=t)) %>% # 计算每组数据的mean和sd
  ungroup()
str(df_stat)
## classes 'tbl_df', 'tbl' and 'data.frame':    9 obs. of  4 variables:
##  $ group: factor w/ 3 levels "group1","group2",..: 1 1 1 2 2 2 3 3 3
##  $ gene : chr  "gene-1" "gene-2" "gene-3" "gene-1" ...
##  $ mean : num  120 249 149 119 250 ...
##  $ sd   : num  19.4 51.4 30.2 21.2 52.3 ...
# 画图
#直接在画图的语句中计算出error_bar所需的数据:
#(即下面的ymin=mean-sd和ymax=mean sd语句)。
library(ggplot2)
dodge <- position_dodge(width=.9)
df_stat %>% ggplot()  
  geom_bar(aes(x=gene, y=mean, fill=group), 
           stat="identity", position=dodge)  
  geom_errorbar(aes(x=gene, ymin=mean-sd, ymax=mean sd, color=group), 
                stat="identity", position=dodge, width=.3)

两种方法的结果是一样的,相对而言,dplyr的实现方法更简单快捷。

最后,两种方法的完整代码如下:

#################第一种实现方法:用aggregate计算数据######################
# 导入数据
setwd("e:/")
df <- read.csv("gene_exp.csv", header=t)
 
# 可以在这里改列名,这些列名就是最终图上x轴的标签名。
colnames(df)[1:3] <- c("gene-1", "gene-2", "gene-3")
str(df) # 显示数据集内容
 
# 将上述"宽数据"转化为"长数据"
library(reshape2)
df_reshape <- melt(df, id.vars=c("group"))
str(df_reshape)
 
# 获取三个组各个基因表达量的平均值
df_mean <- aggregate(df_reshape$value, list(group=df_reshape$group,
                        gene=df_reshape$variable), mean, na.rm=t)
 
# 获取三个组各个基因表达量的标准差
df_sd <- aggregate(df_reshape$value, list(group=df_reshape$group,
                        gene=df_reshape$variable), sd, na.rm=t)
 
# 合并mean和sd
colnames(df_mean)[3] <- "mean"
colnames(df_sd)[3] <- "sd"
df_stat <- merge(df_mean, df_sd, by=c("group", "gene"))
str(df_stat)
 
# 画图
#直接在画图的语句中计算出error_bar所需的数据:
#(即下面的ymin=mean-sd和ymax=mean sd语句)。
library(ggplot2)
dodge <- position_dodge(width=.9)
ggplot(data=df_stat)  
  geom_bar(aes(x=gene, y=mean, fill=group), 
           stat="identity", position=dodge)  
  geom_errorbar(aes(x=gene, ymin=mean-sd, ymax=mean sd, color=group), 
                stat="identity", position=dodge, width=.3)
 
####################第二种实现方法:用dplyr包计算数据######################
# 导入数据
setwd("e:/")
df <- read.csv("gene_exp.csv", header=t)
 
# 可以在这里改列名,这些列名就是最终图上x轴的标签名。
colnames(df)[1:3] <- c("gene-1", "gene-2", "gene-3")
str(df) # 显示数据集内容
 
# 获取三个组各个基因表达量的平均值和标准差
library(tidyr)
library(dplyr)
df_stat <- tbl_df(df) %>%
  gather(gene, value, -group) %>%  # 将"宽数据"转化为"长数据"
  group_by(group, gene) %>%         # 将数据分组
  summarise(mean=mean(value, na.rm=t), sd=sd(value, na.rm=t)) %>% # 计算每组数据的mean和sd
  ungroup()
str(df_stat)
 
# 画图
#直接在画图的语句中计算出error_bar所需的数据:
#(即下面的ymin=mean-sd和ymax=mean sd语句)。
library(ggplot2)
dodge <- position_dodge(width=.9)
df_stat %>% ggplot()  
  geom_bar(aes(x=gene, y=mean, fill=group), 
           stat="identity", position=dodge)  
  geom_errorbar(aes(x=gene, ymin=mean-sd, ymax=mean sd, color=group), 
                stat="identity", position=dodge, width=.3)

以上就是 r语言绘制带errorbar的分组条形图代码的分享的详细内容,更多关于 r语言绘制带errorbar的分组条形图的资料请关注其它相关文章!

免费资源网 - https://freexyz.cn/
返回顶部
顶部
网站地图